Infinite Binomial Expansions: when n is rational

General Form: for any x less than 1,

$$egin{aligned} &(1+x)^n = 1 + nx + rac{n(n-1)}{2!}x^2 + rac{n(n-1)(n-2)}{3!}x^3 + \ldots + \ &+ rac{n(n-1)(n-2)\ldots(n-r+1)}{r!}x^r + \ldots \infty \end{aligned}$$

Important Expansion:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$
$$e^{-x} = 1 - x + \frac{x^{2}}{2} - \frac{x^{3}}{3!} + \frac{x^{4}}{4!} - \frac{x^{5}}{5!} \dots \dots$$

Problem Types:

1. When three consecutive terms are given to be and Arithmetic Progression(AP):

Result used to solve:

first term + third term = 2*(second term)

2. Finding various sums of binomial coefficients:

Here trick is to be able to figure out on which expression to use binomial theorem

3. Conditioning on binomial terms:

- 1. first write down the condition that is given on terms
- 2. then simply follow solving steps to get answer

1.

Example 11 If the coefficients of a^{r-1} , a^r and a^{r+1} in the expansion of $(1 + a)^n$ are in arithmetic progression, prove that $n^2 - n(4r + 1) + 4r^2 - 2 = 0$.

2.

Example 18 If $(1 - x + x^2)^n = a_0 + a_1 x + a_2 x^2 + \dots + a_{2n} x^{2n}$, then $a_0 + a_2 + a_4 + \dots + a_{2n}$ equals.

(A)
$$\frac{3^n + 1}{2}$$
 (B) $\frac{3^n - 1}{2}$ (C) $\frac{1 - 3^n}{2}$ (D) $3^n + \frac{1}{2}$

3.

Example 17 If the coefficients of $(r - 5)^{\text{th}}$ and $(2r - 1)^{\text{th}}$ terms in the expansion of $(1 + x)^{34}$ are equal, find *r*.

Watch video and try to solve them yourself, since these are ncert examples their answer is given in the ncert book.